Posted on August 15, 2024 by Matthew Mailloux
In August of 2024, the Department of Energy (DOE) dedicated the Grid Storage Launchpad (GSL) at the Pacific Northwest National Laboratory (PNNL). Years in the making, the $75 million GSL is now among the foremost storage research and development (R&D) facility in the country to accelerate the development of next-generation storage technologies. This facility is a testament to the world-class American energy innovation apparatus. This unique structure leverages DOE and the national labs to spur public-private partnerships that can deploy innovative technologies to boost grid reliability and reduce costs.
DOE first identified PNNL as the site for the GSL in 2019, followed by a larger announcement from then Energy Secretary Dan Brouillete in 2020. The GSL and the Energy Storage Grand Challenge both received support from former President Donald Trump in his proposed presidential budgets for FY2020 and FY2021.
The overarching goals of the GSL are supported by the bipartisan Better Energy Storage Technology (BEST) Act authored by Senators Susan Collins (R-ME), Martin Heinrich (D-NM) and Tina Smith (D-MN) on the Senate side, Bill Foster (D-IL), Jaime Herrera Beutler (R-WA), Sean Casten (R-IL), and Anthony Gonzalez (R-OH), and ultimately signed by former President Trump.The BEST Act received bipartisan, bicameral support, advancing out of the Senate Energy Committee and House Science Committee respectively with 23 co-sponsors in the Senate and 102 co-sponsors in the House. The bill was ultimately included in the Energy Act of 2020 and signed into law by former President Trump.
The BEST Act authorized the Department of Energy (DOE) to establish a cross-cutting energy storage system research and development program to improve the efficiency of the nation’s electric grid, while helping to align research efforts on energy storage technologies. These programs were subsequently funded to the tune of $500 million in the FY23 funding package, directing key resources to the DOE Offices of Electricity, Science, and Energy Efficiency and Renewable Energy.
The BEST Act is a step toward modernizing the U.S. energy grid by promoting American innovation for advanced storage technologies. The bill directed DOE to undertake three energy storage system demonstration projects and established a joint program between DOE and the Department of Defense to demonstrate long-duration storage technologies. It also advanced recycling efforts to reuse critical energy storage materials such as lithium, cobalt and nickel. Collectively, these efforts will help increase the resilience and reliability of the grid, lower energy costs and reduce reliance on foreign adversaries like China.
Grid reliability is a growing concern all across the country. Grid operators project major increases over the next decade to respond to the growth of data centers, AI and a budding U.S. manufacturing renaissance. From weather events to the retirement of baseload assets, the grid will need a full set of solutions featuring new technologies to meet ever-growing energy demand. For example, wind and solar are variable resources whose availability depends on the weather, which poses challenges to grid operators who must carefully balance supply and demand every minute of every day to keep the lights on. More innovation in storage technology will help with that balance.
The GSL facility is designed to specialize in the most pressing research areas, including testing basic materials and developing pilot-scale battery systems to validate new technologies. These types of activities are a key part of the innovation S-curve.
There continues to be broad, bipartisan support for energy storage innovation. In addition to the GSL, the Infrastructure Investment and Jobs Act (IIJA) provided funding for demonstration projects and key support for critical minerals innovations. Beyond these projects, the Trump Administration launched the Energy Storage Grand Challenge to ensure America can domestically develop and manufacture the energy storage technologies needed to meet market demands by 2030. Most recently, the Biden Administration launched the Long Duration Storage Shot, which aims to “reduce the cost of grid-scale energy storage by 90% for systems that deliver 10+ hours of duration within the decade.”
This strong federal support and broad public-private partnerships have catapulted energy storage as an innovation success story. These types of agreements can jumpstart innovation from the lab to commercial success.
Form Energy recently announced projects with utilities in Minnesota and Maine, in addition to nearing completion of their flagship factory at a former steel mill site in Weirton, WV. Quidnet recently received a SCALEUP Award from ARPA-E, and startups Antora and Rondo recently announced major fundraising rounds for their respective thermal battery technologies.
Even though the innovation these companies have put into action, there are still barriers that need to be overcome for broad deployment. These include reforms to wholesale electricity markets to ensure storage assets are compensated for the attributes they provide to the grid, market signals that encourage variable renewables to pair their output with energy storage to provide firm power, and improved models to incorporate long-duration storage into utility planning.
There is a lot of room for Congress to build on the success of the GSL, the BEST Act and the infrastructure law in the year ahead. These promising investments are just the beginning of a generational shift toward American made storage technologies.