Power Demand Explained: Watts, Gigawatts and the Future of Energy

These days, we hear a lot about the rapid increase in global energy demand due to various factors like growing economies, widespread electrification, and the rise of data centers as AI expands. And it’s true. Here in the United States, after 15 years of static growth, our electricity demand is rising at an accelerated rate. Researchers estimate that by 2030, we will need 20% more energy - a total of 5 million gigawatt-hours of electricity each year.

“5 million gigawatt-hours.” That sounds like a lot. But what does that really mean?

Let’s start with the basics. A watt is a measure of power in an instant. For example, the 60-watt light bulb in your lamp at home requires 60 watts of power to turn on. A Watt-hour is a measurement of that power usage over time.

So, let’s say you turn on your lamp to read a book for two hours, you use 120 watt-hours of electricity. Easy enough.

Now, let’s take a look at a few other examples, going in order from smallest to largest. But first a reminder about unit prefixes: there are one thousand watts in a kilowatt, one million in a megawatt, and one billion in a gigawatt. 

While you’re reading your book, your lamp might only use 120-watt hours of electricity, but the average American household will use 2.4 kilowatt-hours during that time. That’s your lamp, the AC, the TV playing, and so on. Scaling up - with 150 megawatt-hours - you could power 42,000 American households for three hours while they watch a Sunday afternoon football game… or you could use your 150 megawatt-hours to power the NFL stadium itself. In the same amount of time, a large city like Washington D.C. would consume 25 times that much electricity, almost 4 gigawatt hours.

Currently, the U.S. needs around 4 million of these gigawatt-hours a year - again that’s 4 million billion watt-hours - or 4 with 15 zeros after it - and those needs are met with a mixture of 60% fossil fuels, 30% renewables, and 10% nuclear energy. And to get us 20 percent more energy - up to 5 million gigawatt hours a year  - we would need the equivalent of 1,500 Hoover dams in additional generation. That means we are going to need a lot more of ALL of these energy sources to keep up with expected demand.

And, we don’t just need more energy, we need energy that is affordable, reliable and clean. In other words, we need to take a pragmatic, all of the above approach to U.S. energy development. To keep the lights on - at a price that consumers can afford, we need more baseload energy –  the 24/7/ 300 and 65 days a year electricity sources that provide clean power. That means things like advanced nuclear, geothermal, and natural gas with carbon capture.

Ultimately, in order to generate and move all this energy around, we are going to need more than 15,000 new energy projects in this decade alone, and every single one of those projects starts with a permit. Unfortunately today in the United States, you can get a college degree faster than you can get a permit to build a clean energy project. That is why we all must work together to streamline federal permitting processes and unleash American energy. 

ClearPath’s answer to the power demand challenge? It’s time to Let America Build.

An Innovation Agenda for the Department of Energy (American Affairs)

This op-ed was originally published by American Affairs on August 19, 2024. Click here to read the entire piece.

The world is about to need more energy. A lot more. The combination of providing basic energy services to emerging markets and powering a new generation of data centers and manufacturing activity means the era of flat energy demand is over. Grid operators all across the United States are grappling with a rapid uptick in load growth projections and scrambling to build the energy infrastructure necessary to meet those forecasts.

As the world enters this new phase of energy growth, one thing is certain: the United States must lead the world and pioneer the technologies to make it possible. America is blessed with a world-class energy innovation engine led by the Department of Energy and the seventeen National Labs that have launched countless new technologies into the market. The Department of Energy (DOE, the Department) is the world’s largest funder of research for physical sciences and applied energy research, development, and demonstrations (RD&D). It is the sole federal entity with the capacity to advance innovative clean energy technologies in coordination with the private sector. These public-private partnerships are critical to commercializing breakthrough tech­nologies domestically and ultimately exporting them to key partners around the globe.

Congress has recently enacted legislation to reinvigorate these efforts, providing billions of dollars in new funding to support innovative energy demonstration projects and the commercialization of new tech­nologies. The conditions are right for America to meet this challenge, but the next presidential administration must agree to prioritize energy deployment first and foremost.

Click here to read the full article

CO2 Pipelines Are Safe…and We Need a Lot More

You’ve probably heard about a clean energy technology called Carbon Capture, Utilization, and Storage – or “CCUS” for short.

This is a method of capturing carbon dioxide or “CO2” from emissions sources like power plants and industrial facilities. Another method for reducing emissions is called Direct Air Capture, which removes CO2 that is already in our atmosphere — think a giant vacuum. If we’re serious about global emissions reduction — we need both.

In addition to driving down emissions, captured CO2 is also a valuable commodity.  CO2 is not only used to make your beer fizz, carbon oxides can be used for everyday products like building materials, fertilizer, and fuels. CO2 that is not in use can be permanently and safely stored - usually underground - where it resides for thousands of years. 

Often, when CO2 is captured, it’s not located near an available storage or use site and has to be transported to another location. Today, the best and safest way to move CO2 is through pipelines. 

Pipelines are everywhere - often without us even realizing it. They are beneath our highways, run through our cities, and connect our homes. Other essential resources, like natural gas, water, and waste, are all moved by pipelines. That’s because pipelines are the most land-efficient way to transport materials while minimizing environmental impact.

The Pipelines and Hazardous Materials Safety Administration, also known as “PHMSA”, has long regulated the security of this infrastructure. PHMSA provides national standards for pipeline design, construction, maintenance and operation. These ensure that all necessary measures are taken to mitigate risks and safeguard the well-being of your family and the environment.

Now let’s talk about CO2 pipelines. The U.S. currently has more than 5,000 miles of these pipelines, which have been safely operating across our country for over 50 years. CO2 is a stable, non flammable gas - we know it’s safe. We breathe it in and out every day - it’s even used in fire extinguishers. Over the last twenty years, there have been zero recorded fatalities associated with the very few CO2 pipeline incidents that have occurred. A pipeline accident, like we saw in 2020 in Satartia, Mississippi, while concerning, is extremely uncommon and is not representative of the safety performance of this critical infrastructure over the last several decades.

As demand for clean, reliable, and affordable energy grows, so will the demand for effective carbon management technologies. That means, to meet our energy security and global emission reduction goals, the build-out of CO2 pipeline infrastructure is vital.  An estimated 30,000 - 96,000 miles of CO2 pipelines will be needed by 2050 – that’s roughly 5 to 18 times the length of our existing network. 

We get it, some people are uneasy about new infrastructure. But let’s face it, whether you care about climate change or U.S. competitiveness- we need these technologies. By building CO2 pipeline infrastructure, we are not only building our capacity to reduce emissions and protect our environment, we’re also creating jobs, bolstering local economies, and continuing to use the energy sources that make our country strong. In America, we’re not afraid to build — it’s what we do. 

And, through R&D and innovation, we’ll leverage the efficiency and maintain the strong safety record of this vital American infrastructure.

Let America build - A policy path to modernize energy permitting

Our team spends a lot of time on reliable, affordable, clean energy systems that run 24/7. These types of technologies are an integral part of our energy future, but with a growing economy and electricity demand doubling, we need MORE power.

This means building a lot of new nuclear, geothermal, and clean fossil power plants. We’ll also need immense new transmission and pipeline infrastructure to move energy around the country.

But we’ve got a ton of work to do in very little time. 

Whether you are motivated by deep emissions reductions, furthering our nation’s energy security, or enabling the next generation of American manufacturing, the coming decades are essential. By many estimates, that means at least 10,000 new clean energy projects this decade alone. And, every one of those projects will require new permits to build. 

Unfortunately, the U.S. has a world-class apparatus… for getting in the way.

Let me give you an example. The National Environmental Policy Act, or NEPA, calls for developers to measure the environmental impact of their projects. But NEPA was passed years before we had other laws with strict environmental standards like the Clean Air Act, Clean Water Act, or Endangered Species Act. 

Each of those are important — but all together … permit reviews can spiral into extremely long efforts, spanning thousands of pages with duplicative analyses and dozens of bureaucrats required to sign off on each individual project. And, this is not even taking into account the time it takes for any local permitting or state regulations. While this system may have made sense 50 years ago, the surge in new energy demand requires a new way.    

When we think about how to build tens of thousands of new clean energy projects, and how to balance speed and safety, it's obvious the U.S. needs a more predictable process. 

At ClearPath, we always focus on solutions. Here are two that should be pretty simple: 

First, grant immediate approval to projects on a site that have already undergone an environmental review.

Second, we must expedite court challenges so a final decision on projects is made in a timely manner. 

Let me simplify both concepts.

Do you remember standing in line at the airport before TSA pre-check? That was brutal! Now, individuals who have proven they are not a risk can move through an expedited line.

Here’s another example.

There are mountains of evidence that some projects have little to no environmental impacts, such as an advanced manufacturing facility that produces parts for clean energy on a brownfield, or converting a retired coal plant to an advanced nuclear facility or siting a new geothermal plant at a depleted oil and gas well. These are the types of projects we should automatically permit to move forward.

Just like random screenings at TSA, we can audit the operators to ensure they’re complying with all environmental laws as we go. So new energy accelerates at no new environmental costs.

And for those projects that do need permits up front, we should ensure reviews are complete within 1 year and resolve any legal disputes within 6 months.

Under the current system, clean energy projects can suffer long delays, sometimes decades, largely because of obstructive litigation practices. We must strike the right balance while halting the never-ending cycle of frivolous lawsuits. 

At ClearPath, we believe all of this can be done without rolling back environmental protections or eliminating the public’s opportunity to be involved in the review process. Even with these necessary changes, a project would still be required to comply with environmental laws during its entire lifetime.*

It’s a win-win. Let’s get building.

U.S. Development Finance Helped Rescue Europe from Russian Energy (The National Interest)

This op-ed was originally published by The National Interest on June 18, 2024. Click here to read the entire piece.

America is facing a critical period of intensifying international challenges. The aggressive maneuvers of adversaries demand an increasingly robust use of U.S. foreign policy assets. Energy to sustain growing economies is at the heart of these issues. America has the opportunity to ensure its influence on the world stage as a provider of affordable, reliable, and clean energy security for decades to come. As Congress considers reauthorizing the U.S. Development Finance Corporation (DFC), whose authorization expires in 2025, it’s time to supercharge this agency as part of an integrated international energy security and climate strategy.

The DFC, the modernized U.S. government development finance institution ramped up during the Trump administration, with bipartisan Congressional support, is a crucial player in helping America compete in geoeconomic rivalries over the future of energy leadership. In 2022, following the Russian invasion of Ukraine, America demonstrated its capacity as a global energy powerhouse. For decades, the European Union (EU) had depended on Russian natural gas imports, which grew in share even after the invasion and annexation of Crimea in 2014. In just one year, the U.S. surged its LNG exports, driving Russian market share in the EU down from 40 percent in 2021 to just 8 percent in 2023. 

This lifeline to Europe was partly enabled by the DFC, which provided over $1.5 billion in financing to support Europe’s energy diversification away from Russian gas. This is just one example of how the DFC has become a key federal agency in supporting America’s geopolitical and geoeconomic interests.

Energy projects supported by the DFC cut across various sectors, ranging from diversifying natural gas supplies in Poland to developing an energy supply hub in Greek shipyards to fostering clean energy generation in Bulgaria and Georgia. This provides allies and partners with U.S. alternatives to malignant energy producers like Russia and the predatory lending for energy infrastructure performed by actors like China. Furthermore, unlike most federal agencies, the DFC typically generates a financial return for taxpayer dollars. In FY 2023, the DFC returned a net positive income of $340 million to the U.S. Treasury from projects it invested in abroad.

Click here to read the full article

The U.S. needs Natural Gas, Here’s a Playbook to Reduce Emissions

In spring 2024, the National Petroleum Council (NPC), a federal advisory council to the United States Department of Energy (DOE), approved the study, “Charting the Course:  Reducing GHG Emissions in the U.S. Natural Gas Value Chain.” The study looks at ways to reduce carbon dioxide (CO2) and methane (CH4) emissions across the U.S. natural gas supply chain (NGSC). This study is the result of a two-year effort by 200+ individuals, including representatives from the oil and gas industry, academia, finance, nonprofits, including ClearPath, Native American tribes and public interest organizations. 

Why should we care about these emissions?

In the U.S., natural gas is an abundant resource with an estimated 100-year supply at current use rates. Natural gas delivers the 24/7 affordable power that heats our homes, secures our power grid and drives our economy. American innovation in novel drilling technologies has allowed the U.S. to become the world’s largest natural gas producer and exporter of LNG, ensuring a cleaner and more reliable domestic supply and providing energy security to our allies abroad. In 2023, we consumed 89.1 billion cubic feet per day of natural gas, the most on record and the average price was the lowest since 2020. Today, we have a roughly $117 billion annual natural gas market and methane emissions have decreased by 16% in the U.S. between 2005 and 2023. 

Natural gas is primarily made up of the chemical compound methane (CH4). When natural gas enters the atmosphere via venting, flaring or leaks along the NGSC supply chain, CH4 can act as a greenhouse gas. The NPC study recommends that DOE continue to sponsor efforts to develop and deploy innovative measurement technologies and monitoring systems. These technologies and systems will be essential to understanding the magnitude of these leaks as well as allowing for rapid mitigation. Carbon dioxide (CO2) emissions primarily occur when natural gas is used as a fuel to power equipment to keep the natural gas moving through the NGSC. The NPC study recommends that the federal government coordinate policies and initiatives for low carbon technology demonstration and deployment within the NGSC, including the deployment of carbon capture and storage (CCS) at LNG facilities and scaling electrified solutions. Deploying technologies that can either capture CO2 emissions or eliminate them is an important step in reducing this GHG emissions from the NGSC.

Cheniere Energy’s Sabine Pass LNG Facility, Cameron Parish, Louisiana

Finding ways to reduce these emissions without compromising U.S. oil and gas production will help maintain U.S. leadership in this critical clean energy asset for decades to come, reducing GHG emissions at home as well as abroad. 

What did the NPC find?

The study found that meaningfully reducing NGSC emissions is an important challenge that will require long-term and close collaboration among U.S. industry, government and researchers to develop a variety of supportive federal and state policies that encourage public-private, technology-based partnerships. 

The study provides analyses of historical and current CO2 and CH4 emissions from the NGSC.   A few highlights from these analyses include:  

The study designed three scenarios to evaluate options for the potential future reduction of NGSC emissions through 2050:

The study identified five actions that are required to significantly reduce NGSC emissions by 2050:

Gas Production Wells

Why is this study important?  

Natural gas has already played a massive role reducing CO2 emissions from the power sector in the United States. The Energy Information Administration estimates that the deployment of natural gas is responsible for nearly two-thirds of domestic emissions reductions between 2005 and 2019. Despite this important progress, the NGSC still creates greenhouse gas emissions that must be reduced to meet reduction goals. The NPC study contains numerous consensus-based and actionable recommendations for DOE, other federal and state agencies and industry-related organizations to consider to meet this challenge.

We know that the U.S. not only leads the way in natural gas exports, we also lead in natural gas innovation - producing the cleanest natural gas in the world. Following this study’s recommendations like deploying innovative monitoring technologies, harmonizing emissions reporting, and developing supportive regulations and market incentives will give credibility to our claim that the U.S. is the world leader in reducing GHG emissions from the NGSC.

Promoting Sustainable Environmental Practices Through Trade Policy

House Committee on Ways and Means Subcommittee on Trade

Below is my testimony before the House Committee on Ways and Means Subcommittee on Trade, entitled "Promoting Sustainable Environmental Practices Through Trade Policy" on December 14, 2022.

Watch Rich’s Opening Remarks
Read Rich's Oral Testimony
Read Rich’s Full Testimony as Seen Below

Good morning Chairman Blumenauer, Ranking Member Smith and members of the Committee. My name is Rich Powell, and I am the CEO of ClearPath, a 501(c)(3) organization devoted to accelerating breakthrough innovations to reduce emissions in the energy and industrial sectors. To further that mission, ClearPath provides education and analysis to policymakers and collaborates with relevant partners to inform our independent research and policy development.

Given this Committee’s vital role in America’s energy trade policy, and how that relates to the global climate challenge, I will discuss three key topics today:

We must not ignore that the climate is changing, and global industrial activity is contributing to it. We hear that statement from the oil and gas industry, power companies, the agriculture sector and the folks running our supply chains. Everyone is clear: it’s time to talk about solutions.

We can’t damage the economy in our efforts. And the good news is, we can point to solutions that are good for the economy and the environment. There are exciting opportunities to develop new clean energy technologies. Rapidly scaling and diversifying American clean energy technologies can reduce global emissions, foster economic growth, and provide safe and reliable energy on a global scale. If done right, solutions can meet the needs of everyday Americans and reduce household costs, while also lowering global emissions. It can also help with U.S. soft power by providing developing countries energy to improve their own economies and provide them with an alternative to projects with China and Russia.

But far too often, energy and climate change policy is oversimplified to false choices. Renewables versus fossil fuels, economy versus environment, emissions reductions around the world versus inaction here at home — these false choices ultimately cloud potential solutions. We can invest in innovative emissions reduction technologies alongside improved trade policies. Ultimately, we will need both.

Most studies suggest that climate change has intensified, but you don’t need a study to see the impacts across the U.S., and in American communities, and you don't have to study science to realize the global market for new clean energy technologies is getting competitive. Other countries are rapidly investing in clean energy, with total investment in 2022 estimated at $1.5 trillion. Remaining a global energy leader by building and exporting clean energy technologies and products is one of the greatest economic opportunities for the U.S. available today.


Think global, and lead with America first

Ongoing aggression and coercive tactics by Russia and China underscore the need for the United States to both be energy secure and provide our allies access to technologies and resources they need to reduce their reliance on adversarial nations while reducing emissions.

The world is looking to U.S. leadership and we need to work with our allies and trading partners to tackle the global climate challenge, ensure reliable and responsible supply chains for clean technology, and grow our respective markets for these technologies. Concerted action with our friends around the world through American leadership is an essential counterweight to other nations that do not have our best interests, nor the world’s climate, at heart.

Trade policy is a critical aspect of achieving this. For instance, recent painstakingly negotiated trade agreements like the U.S.-Mexico-Canada Agreement promote American industrial standards abroad. These help create the international economic conditions to support clean technology innovation and deployment, while establishing a bulwark against nations that do not adhere to such standards. Our network of trading partners is a powerful dimension of American leadership and should be continually expanded, in part, to help combat environmental arbitrage.

Critical minerals represent another area where we need to lead and expand our global trading relationships with like-minded countries to strengthen our clean energy supply chains. Mineral supply is an economic, environmental, and security imperative. The International Energy Agency (IEA) estimates that global demand for minerals for energy systems will quadruple by 2050, creating market demand in the hundreds of billions of dollars. A new energy revolution is going to require an enormous amount of resources like lithium, copper, cobalt, graphite, and nickel. Currently, China dominates the supply chain and dependence on China increases global emissions and handicaps American businesses. At present, China has a dominant position in extraction, and especially processing, of minerals necessary for energy. Its midstream market share ranges from 35 percent to 60 percent of critical mineral supply and 80 percent of rare earths. The concentration of mineral supply chains creates risks of disruption from political or environmental events, poor transparency and traceability, and sacrifices the expertise necessary for value-adding innovation and jobs.

Relatedly, nearly 50 countries have markets for advanced nuclear power, a potential $500 - $740 billion market opportunity over the next 10 years, but Russia and China currently account for about two-thirds of reactors under contract worldwide. Furthermore, Russia controls 46% of uranium enrichment capacity, meaning that the near-term uranium supply for the United States is threatened. It is essential that the array of innovative new American nuclear technologies nearing commercialization accelerate through our own federal licensing and permitting process and then towards the global market, while we onshore and nearshore the nuclear fuel supply chain.

While the current Administration has convened a Minerals Security Partnership, along with other regional and multilateral clean energy dialogues with friendly nations such as Australia, Canada, Japan, South Korea and others to address these challenges, both the public and private sector need to do more, faster to ensure reliable and responsible clean technology supply chains. Similar to how the U.S. has scaled up trade networks for crude oil and natural gas or how we are working with allies to commercialize energy storage, we can apply our talents for creating market-driven goals to develop alternative trading relationships for additional key energy technologies and their materials sourcing requirements.


Unleash American resource development

Energy intensive industries operate on very low margins and often face unfair international competition. We can’t afford to disadvantage American industry by saddling it with overly complex permitting processes and compliance requirements, nor should we neglect some of our most practical clean energy resources such as natural gas or nuclear energy. The fact is, American manufacturing is among the cleanest in the world. Global industry – China in particular – is much dirtier than U.S. industry. Numerous U.S. laws, programs, technology innovation, and voluntary actions by our industry have resulted in a much cleaner economy, and we need to level the playing field so America can remain a global leader.

We should focus on returning manufacturing to the U.S. using clean American energy technology, where production is more efficient and environmental performance is far superior to places like China or Russia. For example, American steel has the second lowest CO2-intensity of any country, and investors are clear they want clean and affordable steel. Two-thirds of U.S. steel is already produced using recycled steel and an all-electric process – and new processes are being demonstrated that make high-grade steel without any emissions. Yet, America is the largest importer of steel in the world. America must find a way to increase domestic production, reduce its reliance on foreign sources, and increase exports around the world that adhere to our strong environmental standards.

Getting the domestic policies right, will allow us to scale up our clean technologies by driving down costs, and we already have a perfect model for how to do this.

We often hear about public-private partnerships in the clean energy space, and for good reason. Hydraulic fracturing is one of the biggest success stories on this front — thanks to research, development, and deployment efforts supported by the Department of Energy (DOE), a breakthrough made by a Texas entrepreneur in the 1970s has become the most affordable source of 24/7 power in America.

George Mitchell figured out how to break up shale rocks to release the natural gas stuck inside. This process, known as hydraulic fracturing, initially got off the ground with support from DOE, which cost-shared research, development and demonstrations in the 1970s and 1990s, as well as tax credits from the 1980s to early 2000s.

Combined-cycle natural gas turbines now produce 24/7 reliable, affordable power. That early stage investment and production tax credit, together more than $10 billion, both expired as the technology matured. Now we have a $100 billion annual shale gas market in America, and saw emissions lower by 20% in the U.S. between 2005-2020. This is driving our rapid expansion of American gas into global markets that can be used to displace unmitigated Chinese coal or Russian gas, over time.

We should also accelerate American nuclear fuel production and expedite the deployment of emerging technologies such as advanced nuclear small modular reactors (SMRs). SMRs have the ability to deliver zero-carbon power generation, be built more rapidly, and at lower costs than traditional reactors. We lead the world in SMR-related patents, but countries, namely Russia, dominate uranium mining and enrichment capacity, thus limiting market potential. Russia and China are already operating next-generation gas and liquid metal cooled reactors, which the U.S. originally pioneered in the 1960s. Here, we should focus on building up our own fuel production capacity and again work with friendly and trusted trading partners such as Australia and Canada as alternative potential sources for uranium. We must modernize the licensing process for new nuclear reactors.

Unfortunately, we have neglected one of our most clean and abundant resources – geothermal energy. The geothermal resources under our feet could literally power 10% of the entire country, if properly tapped, and lead to the export of this scalable, clean energy technology abroad. We should fix the permitting processes on public lands that hold back geothermal developers to develop the technology here first.

The U.S. is well positioned to be a global leader in the production of low-carbon hydrogen, particularly hydrogen made from natural gas with carbon capture. Our abundant renewable and natural gas resources, CCUS technology, and related infrastructure are all key enablers for our potential capabilities with low-carbon hydrogen.

We made significant progress over the past year. In particular, the energy portions of bipartisan Infrastructure Investment and Jobs Act (IIJA) enacted last year includes significant funding for energy programs originally authorized by the Energy Act of 2020, signed into law by President Trump, as well as a number of new energy and climate programs.

Just last week, ClearPath launched a tracker to follow the status of the Department of Energy’s implementation of the energy programs funded by the bipartisan Infrastructure IIJA, because with great investment of taxpayer dollars comes great accountability. We’ve been able to visualize the progress the Administration has made on awarding projects with the infrastructure funds to help ensure we are making the best use of this investment in ourselves and bringing these projects to fruition.

We appreciate the focus of the House Republican Energy, Climate and Conservation Task Force on rolling out policies to unlock American resources, accelerate American innovation, cut through red tape, and invest in ourselves so that we can advance U.S. clean technologies globally to lower emissions and beat our adversaries who wield energy as a weapon.

To unleash clean American energy technologies, the U.S. and our trading partners will need to rapidly develop economies of scale and advance R&D to reduce costs and remain competitive with the rest of the world. This will also require greater international alignment on what constitutes zero- and low-carbon energy sources, such as blue hydrogen, to help facilitate trade. Technological innovation, the American entrepreneurial spirit, and targeted free market incentives have made the United States one of the most carbon efficient economies in the world. We should prioritize policies that encourage the private and public sectors to accelerate down that path.


American clean energy exports

If we are successful at rapidly increasing the total amount of clean energy technologies deployed domestically, driving down their cost, and holding the lead in product quality through R&D, then we will have a significant opportunity to boost our exports of these technologies.

The economic opportunity for the U.S. is remarkable. A recent report from Boston Consulting Group estimated the Serviceable Addressable Market (SAM) for six key clean energy technologies (clean steel, hydrogen, long-duration energy storage, EVs, direct air capture, and advanced nuclear SMRs). These alone have a domestic SAM of $9 to $10 trillion through 2050. Potential U.S. exports across these technologies in 2050 could reach roughly $330 billion annually. Additionally, the adoption of these technologies alone could reasonably enable 20 Gt/yr in global emissions abatement if adopted at scale by 2050.

Additionally, we should fast-track decisions on things like American natural gas and hydrogen export facility permits to get our clean, and cleaner, fuels to global markets faster, rather than watch as global allies get their energy from hostile nations, or even get cut off.

While energy prices here at home remain elevated, Europe has seen even more dramatic price spikes given its tenuous energy supply chain. As part of Europe’s drastic rethinking of its energy mix, U.S. liquefied natural gas (LNG) has become a critical lifeline to the European Union as it continues to wean itself from Russian gas.

In fact, the U.S. is now the leading producer of oil and natural gas in the world, exporting our LNG to 39 countries. But just as importantly, a life cycle analysis conducted by the Department of Energy’s (DOE’s) National Energy Technology Laboratory shows that American LNG exports can be up to 30% cleaner than Russian natural gas. So, the United States is in a prime position to lead global action on LNG, while boosting our exports, creating jobs, reasserting America’s global technology and resources leadership over Russia and China, and driving down global emissions all at the same time.

Focusing for a moment on hydrogen, because of our abundant domestic energy resources, the U.S. can be a dominant exporter in this domain as well, but there is a global race to capture that market. Many countries, like Japan, South Korea, and the EU, are beginning to include hydrogen in their decarbonization efforts but are unable to produce the necessary amounts domestically. It’s estimated that cumulative global demand is roughly 1 - 2 billion metric tons. American clean hydrogen could competitively meet that demand with low-carbon hydrogen and ammonia hydrogen produced from natural gas with a high rate of carbon capture as well as from renewables. Several U.S. regions are poised to benefit from hydrogen exports. These future hydrogen hubs are able to support hydrogen production capacity and delivery infrastructure and can include major industrial centers and geologic storage capacity for carbon dioxide sequestration.

In the wake of the Russian invasion of Ukraine, it has become clear that civil nuclear exports are vital to our core national interests and other countries are looking at the U.S. to lead. They recognize that partnering with Rosatom is a bad deal that locks them into a 60-100 year relationship with Russia. In particular, Eastern European countries have been inking MOUs and contracts with the U.S. – Poland signed up for several U.S.-designed AP1000 reactors, and Romania plans to build a NuScale small modular reactor. We already know that not all countries play fair, and the U.S. must leverage the numerous financing tools at our disposal to support nuclear energy exports. These tools include utilizing the Export-Import Bank and the U.S. Development Finance Corporation, which lifted their ban on nuclear energy two years ago.

We should also look at new authorities that may be required to support nuclear energy exports. A significant piece of legislation, the International Nuclear Energy Act (INEA), passed out of the Senate Foreign Relations Committee just last week by voice vote. The companion bill in the House was introduced by your colleagues Reps. James Clyburn (D-SC) and Byron Donalds (R-FL) in October. INEA creates a national strategic plan for nuclear energy exports and will be essential to competing against China and Russia. Future enactment of this bill will result in sustained industry, high-paying jobs, abundant clean energy for developing nations, and strong international partnerships.

There is more to be done for international nuclear energy. As I mentioned previously, Russia and China dominate nuclear energy development today and offer significantly stronger incentives to partnering countries. The U.S. needs stronger coordination between agencies and a fast-track nuclear energy export process for allied countries. Additionally, we must fully end our reliance on Russia for nuclear fuel and establish a domestic fuel industry that can support both the U.S. and its allies. None of these tasks are easy, but they are worth doing.


Necessary Next Steps

Trade policy is critical to creating a global economic landscape that supports innovation and deployment of clean energy technology. For years, the United States led negotiations on a high-standards Environmental Goods Agreement, and although the negotiations were not completed, significant progress was made.

We appreciate the efforts that Reps. Kevin Brady (R-TX), Adrian Smith (R-NE), Suzan DelBene (D-WA), and other members of this subcommittee have devoted themselves to raising the importance of an Environmental Goods Agreement with the Administration.

We need to get back to the lead position at the negotiating table.

For many of the clean energy products under consideration for an Environmental Goods Agreement in the past, U.S. tariffs are already very low compared to tariffs imposed on American-made products by countries with whom we would want to negotiate. Accordingly, an Environmental Goods Agreement would help open international markets to U.S. clean energy technologies – like the ones I’ve discussed – with little disruption to our domestic market.

An ambitious Environmental Goods Agreement would go a long way to reduce the price of U.S. clean energy technologies abroad, making them more viable across the developed and developing world, thus helping to reduce carbon emissions and supporting American jobs.

We need to be thoughtful and forward-leaning in our opposition to China’s belt-and-road initiative for clean energy infrastructure projects. For many countries looking to continue their economic development, China is often their primary financing partner. The U.S. must use its authorities at Commerce, State, Development Finance Corporation (DFC), U.S. Trade and Development Agency (USTDA), and the Export-Import Bank of the United States (EXIM) to provide an alternative partner, while also supporting clean energy manufacturing here in the United States. These agencies offer robust financing options for technologies important to the developing world. Due to the size of these energy projects, almost every major project requires financing backstops from the exporting country. Cementing the mission of clean energy exports and development in these agencies by law will go a long way to building new clean energy markets globally for American products. This will further ensure that future energy projects in developing countries emit less and eliminate forced labor, particularly as it relates to current human rights violations throughout the existing supply chain in China.

To address a massive global challenge like climate change, every tool must be available. No country will use a single clean power technology – every country will need to find the right mix given its national circumstances, resource endowments, and pre-existing industry.

Thank you again for the opportunity to testify today. ClearPath is eager to assist the Committee in developing innovative policy solutions to ensure US leadership in international clean energy trade. We applaud the Committee for taking on this important task to help ensure the appropriate action, including trade policies that will help advance innovative technologies to provide clean, reliable, and necessary energy to our nation and the world.

Conservatives Are Cutting A Clear Path To Solving Climate Change. Here’s How (Daily Caller)

This op-ed was originally published by The Daily Caller on December 9, 2022. Click here to read the entire piece.

Congressional leadership transitions bring forth new committee assignments, new priorities and a new energy policy vision. While some suggest a new Republican majority in the U.S. House of Representatives will work to undo recent efforts on addressing climate change, we disagree with that premise.

Look, economic inflation, high gas and electricity prices, unrest in Eastern Europe, increasing global carbon dioxide emissions and global supply chain chaos are all realities. Combined, there is an ongoing global energy crisis.

But how to solve this crisis has created false choices in Washington. Debates on renewables versus fossils, economy versus environment, or 100% global emissions reduction versus inaction in the U.S. are clouding the path forward on the global challenge.

The truth is, no nation, government or business will achieve climate goals and see economic success unless we eliminate those false choices and leverage all energy resources on the table.

We need to focus on policies that make new and emerging clean energy technologies more affordable, not policies that make existing energy more expensive and harder to produce.

Democrats have historically proposed top-down climate policies like mandates, heavy regulations, or new taxes. Yet global emissions, the only real measure of success or failure in solving climate change, continue to increase...

Click here to read the full article

Where American Gas Goes, Other Clean Energy Can Follow

The United States’ role as a global energy leader has taken on heightened importance since Russia’s invasion of Ukraine. While energy prices here at home have soared, Europe has seen even more dramatic price spikes given the tenuous energy supply chain. As part of Europe’s drastic rethinking of their energy mix, U.S. Liquefied Natural Gas (LNG) has become a critical lifeline to the European Union as it prepares to wean itself from Russian gas over the next six months.

Recent data published by the Energy Information Administration (EIA) makes clear the importance of American LNG. Since signs of the Russian buildup along the Ukrainian border and subsequent invasion in “the first four months of 2022, the United States exported 74% of its liquefied natural gas (LNG) to Europe, compared with an annual average of 34% last year.” In fact, the U.S. is now the leading producer of oil and natural gas in the world, exporting our LNG to 39 countries around the globe.

Monthly Liquified Natural Gas Exports by Destination Region (Jan 2020 - April 2021)


Source: EIA

The United States is in a unique position to lead global action on LNG and a number of clean energy sources, while creating jobs in new industries, reasserting America’s global technology and resources leadership over Russia and China, and driving down global emissions. Technological innovation, the American entrepreneurial spirit, and targeted free market incentives have made the United States one of the most carbon efficient economies in the world.

There are countless examples across the energy and industrial sectors, none larger in terms of scale than LNG. A recent life cycle analysis conducted by the Department of Energy’s (DOE’s) National Energy Technology Laboratory on U.S. LNG exports show that American LNG can be up to 30% cleaner than Russian natural gas.

While the process of liquifying natural gas has been going on for more than 100 years in the U.S., the first export shipment of LNG was sent from Cheniere Energy’s Sabine Pass Liquefaction Project in 2016. The strong growth of US LNG exports we are witnessing today is a testament to private sector innovators as well as the public-private partnerships led by the Department of Energy in the 1980s, making significant investments in the hydraulic fracturing infrastructure that has made today’s natural gas exports possible. Even with a short term disruption related to the Freeport LNG facility, U.S. LNG exports are more critical than ever.

A similar story exists for just about all major advances in new energy technology, from oil to nuclear energy to renewables — each had serious government investment in its early stages. Bridging the funding gap from early stage research to commercialization is the largest challenge to bringing new technologies to the global market.

The success of LNG now has the opportunity to manifest again in the form of clean hydrogen, carbon capture, and advanced nuclear technologies. Critical investments like these at the Department of Energy, including those funded by the Bipartisan Infrastructure Law, can further strengthen American energy security.

Russia is not only using their oil and natural gas for geopolitical power. Their state-owned nuclear company Rosatom is in the middle of the nuclear energy supply chain, particularly for countries like Finland, the Czech Republic, Turkey and Ukraine who have Russian made nuclear reactors.

Today there are 52 nuclear reactors under construction across the globe, but only two are in the U.S. Russia accounts for about two-thirds of reactor sales worldwide. China has 14 reactors currently under construction and has announced plans to build 150 new reactors over the next 15 years.

This comes as more nations are recognizing the value of nuclear energy, seeking to avoid making the same mistakes as other countries, namely Germany, that decided to arbitrarily shutter domestic energy resources. This is one of the major reasons why an all-of-the-above portfolio, paired with historic investments in research, development, and demonstration projects is the best and most viable path to reducing global emissions. Now, as Europe rethinks the tools it will use to meet its own clean energy targets and keep their lights on, U.S. innovation and exports can lead the way with a number of clean energy technologies.

Multiple announcements were made around the COP26 in Glasgow in November including the U.S.-Romanian bilateral agreement to purchase new U.S. reactors, the United Kingdom commitment to nuclear as a core part of their net-zero plans, the French recommitment to not only maintain but potentially enhance their nuclear fleet, and the Japanese announcement about restarting their fleet to meet their decarbonization goals. There are other deals already in place, such as Poland’s agreement with NuScale Power to deploy its small modular reactor (SMR) technology.

A U.S.-Romanian Bilateral Agreement to Purchase U.S. Reactors

Beyond nuclear, hydrogen also provides an enviable opportunity to build a domestic energy infrastructure capable of shielding Americans and our allies from the fragility of geopolitics, ensuring every household can keep the lights on and providing critical heating and fuel for transportation. Further, thanks to the development of U.S. liquified natural gas export facilities, we can leverage this infrastructure to export hydrogen to our allies in Europe and elsewhere in the future.

Demand from Europe for U.S. LNG and other clean energy technologies shows no signs of abating as the conflict wages on. Thanks to LNG, America has a growing number of energy trading partners, offering the United States an opportunity to export a broad suite of technologies and firmly cement its position as a global leader in both energy security and emissions reduction. Ultimately, the world is safer and cleaner when America flexes its energy muscle.

A Natural Gas Innovation Success Story from Public-Private Partnerships

Investing in clean energy innovation pays off. All major advances in new energy technology, from oil to nuclear energy to renewables, had serious government support in their early stages – even the hydraulic fracturing revolution that caused the natural gas boom. All of these have led to American energy independence. Early-stage government support launched a $100 billion annual market. Not a bad return.

We often hear about public-private partnerships in the clean energy space, and for good reason. Hydraulic fracturing is one of the biggest success stories on this front — thanks to research, development, and deployment efforts supported by the Department of Energy (DOE), a breakthrough made by a Texas entrepreneur in the 1970s has become the most affordable source of 24/7 power in America.

George Mitchell figured out how to break up shale rocks to release the natural gas stuck inside. This process, known as hydraulic fracturing, initially got off the ground with support from DOE, which cost-shared research, development and demonstrations in the 1970s and 1990s, as well as tax credits from the 1980s to early 2000s.

Combined-cycle natural gas turbines now produce 24/7 reliable, affordable power. That early stage investment and production tax credit, together more than $10 billion, both expired as the technology matured. Now we have a $100 billion annual shale gas market in America, and saw emissions lower by 20% in the U.S. between 2005-2020.

There are many parts of our energy and industrial system where we don’t yet have a cheaper clean alternative — which is why we need to continue the innovation we’re already doing — but much more is needed.